
Year 9 AQA GCSE Chemistry Revision Booklet

Use this booklet to help you with your revision in preparation for your year 9 Chemistry examination.

There are lots of tips and hints to make sure that the time you spend revising is effective.

This Checklist tells you exactly what needs to be learnt and could be examined in each topic. Use it to help guide your revision plan and revision time. Just reading it and trying to learn some of the facts will help you to gain marks in the examination. If you don't understand any points then look them up in the textbook, ask a friend or teacher. Revision Schedule: Use the table below to help you plan your revision.

Topic Area	Pages of the white Co-ordinated Chemistry	Pages of the Red Co-ordinated Chemistry	Studied checklist	Read through textbook	Read through exercise book	Made notes or index cards or mind map or spider diagram		visit	s of t	opic	area	3
· · ·			 ✓ 		✓		✓	✓	✓	✓	\checkmark	✓
Atomic Structure	26-39	24-33										
Particles	6-23	6-22										
Formulae and Equations	62-71	60-73 46-47				<u> </u>						
Bonding and Structure	42-59	40-51										
Acids, Ba- ses, Salts	138- 149	116- 127										

Revision Top Tips

Use your textbook

This book is excellent and covers all the work that you have done this year. It also contains questions to test knowledge and also past paper questions - use these resources rather than spending time browsing the web.


Use your exercise book Go through the work that you have done in lessons – use your exercise book to remind yourself what you have studied.

Write something.... Spider diagrams, mind maps, index cards, revision notes, revision diagrams - do what works best for you but usually it is best to write it down.

Writing Questions

A good way to revise is to use your textbook to write really good questions and answers. Use these questions then to get a friend, parent or test you.

Remember the learning Pyramid when you do your revision.

Use the text book and revision book.

Read and write notes or draw a mind map Condense work or notes **Write, write, write** – at least then you have to engage with

thinking

Test yourself

Year 9 Atomic Structure and the Periodic Table	\bigcirc	\bigcirc	\bigcirc
Models of the atom – know the:			
• plum pudding model of the atom and Rutherford and Marsden's alpha experiments			
 Niels Bohr adaptation of the plum pudding model 			
 Chadwick's experiments and what they showed 			
Atoms, elements and compounds - know			
 about elements (first 20) and what compounds are 			
 names of compounds given formulae or symbol equations 			
• how to write word equations for the reactions in this specification and how to write			
formulae and balanced chemical equations			
 the electrical charges and masses of protons, neutrons and electrons. 			
• know how to calculate the number of protons, electrons and neutrons in an atom or ion			
given the atomic number and mass number			
• the size of atoms as very small, having a radius of about 0.1 nm (1 x 10-10 m).			
• the radius of a nucleus is less than 1/10 000 of the atom (about 1 x 10-14 m).			
what an isotope is			
Electronic structure - know			
 how electrons are arranged in atoms 			
 how to draw electron configuration diagrams 			

Ye	ar 9 Particles	\odot	\bigcirc	\bigcirc
Th	e three states of matter - know			
•	The states of matter are solid, liquid and gas and how they are shown in equations			
•	The names of the changes of state			
•	The arrangement of particles in each of the states of matter			
•	How to use particle theory to explain changes of state such as steric acid cooling			
•	What affects the amount of energy needed for a substance to change state			
•	How to use melting and boiling point data to decide the state of a substance			

Formulae and Equations - Stoichiometry	\bigcirc	\bigcirc	\bigcirc
Conservation of mass and balanced chemical equations – know that			
 no atoms are lost or made during a chemical reaction so the mass of the products equals the mass of the reactants. 			
 mass changes when a reactant or product is a gas 			
• what happens to the mass of reactants and products during reactions such as when a metal reacts with oxygen or during the thermal decompositions of metal carbonates.			
• how to use the balanced symbol equation and calculations involving the masses of at- oms and molecules to make predictions about the changes of mass during a reaction.			
Formulae and valencies – know			
the valencies of elements and common ions			
how to write the formulae for compounds			
how to balance equations.			

Reactions of Acids	\odot	\bigcirc
Reactions of acids with metals - know the following reactions and be able to apply then	n 🗡	
to different metals, acid etc		
 Metal and acid produce salts and hydrogen. 		
 Acid and base (alkali) produce salt and water = neutralisation 		
 Metal carbonates and acids produce salt and water and carbon dioxide 		
Be able to		
Predict the salt formed during a reaction between any particular acid and a base or alkali.	,	
Soluble salts - know		
• how to make soluble salts by reacting acids with solid insoluble substances, such as		
metals, metal oxides, hydroxides or carbonates.		
• how to describe in detail the steps to make a pure, dry sample of a soluble salt from a	n	
insoluble oxide or carbonate (base).		
The pH scale and neutralisation – know		
• how to use the pH scale, from 0 to 14, to measure of the acidity or alkalinity of a solu-		
tion.		
 how to describe what a base and alkali are 		
 how to describe what an acid is 		
• how to use universal indicator or a wide range indicator to measure the approximate		
pH of a solution and then identify acidic or alkaline solutions.		
Strong and weak acids - know		
 what a strong acid is along with examples 		
what a weak acid is along with examples		
• why a particular acid is either strong or weak in terms of dissociation/ionisation		
 how the hydrogen ion concentration is related to the pH 		
• how to describe the terms dilute and concentrated and understand that these are dif	-	
ferent to strong and weak		

Vear O. Structures and Rending			
Year 9 - Structures and Bonding	$(\bullet \bullet)$	(**)	(••)
			6
Ionic bonding – know			
 in ionic bonding the particles are oppositely charged ions when a metal atom reacts 			
with a non-metal atom electrons in the outer shell of the metal atom are transferred.			
 how metal atoms become ions either +, 2+ etc 			
 how non metal atoms become ions either -, 2- etc 			
 how to draw dot and cross diagrams to show ionic bonding 			
that metal atoms lose electrons to become positively charged ions. Non-metal atoms			
gain electrons to become negatively charged ions. This can be shown with dot and cross			
diagrams.			
Ionic compounds - know			
• The structure of an ionic compound such as sodium chloride is a giant structure of ions.			
Ionic compounds are held together by strong electrostatic forces of attraction between			
oppositely charged ions.			
 How to deduce that a compound is ionic from a diagram of its structure 			
• The limitations of using dot and cross, ball and stick, two and three dimensional dia-			
grams to represent a giant ionic structure			
• How to work out the empirical formula of an ionic compound from a given model or di-			
agram that shows the ions in the structure.			

Properties of ionic compounds - know		
How the strong electrostatic forces of attraction in all directions in an ionic compound		
result in compounds with high melting points and high boiling points		
Why ionic compound when melted or dissolved in water, conduct electricity		
Covalent bonding - know		
 that particles are atoms which share pairs of electrons and that bonds are strong 		
that covalent bonding occurs in non-metallic elements and in compounds of non-		
metals.		
that covalent bonding can be found in different structures – covalent molecular struc-		
tures such H_2 , Cl_2 , O_2 , N_2 , HCl , H_2O , NH_3 and CH_4 and giant covalent structures such as		
diamond and silicon dioxide		
Properties of small molecules - know		
• The properties of covalent small molecules and be able to explain why they are gases		
using ideas relating to energy and the strength of intermolecular forces.		
• How the strength of intermolecular forces varies as molecules get bigger and how this		
affects boiling and melting points.		
Giant covalent structures – know		
• That diamond and graphite (forms of carbon) and silicon dioxide (silica) are examples of		
giant covalent structures		
The properties of each of these giant covalent structures		
• How to relate the properties of each of these substanes to their structures eg; melting		
point, electrical conductivity, hard or soft, shiny??		
Graphene and fullerenes – know		
• the structure of graphene and fullerenes including a Buckminsterfullerene (C60) and		
carbon nanotubes		
• how their properties in terms of strength, electrical and thermal conductivity.		
• how fullerenes can be used for drug delivery into the body, as lubricants, as catalysts		
and carbon nanotubes can be used for reinforcing materials, eg in tennis rackets.		
Nanosciencec and Nanoparticles – know		
• That nanoscience refers to structures that are 1–100 nm in size, of the order of a few		
hundred atoms. Nanoparticles, are smaller than fine particles, which have diameters		
between 100 and 2500 nm (1 x 10-7 m and 2.5 x 10-6 m).		
• That coarse particles (PM10) have diameters between 1 x 10-5 m and 2.5 x 10-6 m.		
Coarse particles are often referred to as dust.		
Nanoparticles may have properties different due to their high surface area to volume		
ratio.		
• some of the applications in medicine for controlled drug delivery and in synthetic skin;		
in electronics; in cosmetics and sun creams; in the development of new catalysts for		
fuel cells materials; in deodorants and in fabrics to prevent the growth of bacteria.		
• some of the advantages and disadvantages of using nanoparticles are being used in sun		
creams.		
Metallic bonding and metallic properties - know		
 How to draw and explain the structure of a metal and an alloy 		
 How to explain the properties of metals and relate these properties (high melting point, 		
shiny, malleability and electrical conductivity) to their structures		
 Why most metals in everyday use are alloys 		
	<u> </u>	