Advanced GCE

Physics A (H556)
Data, Formulae, and Relationships Booklet

The information in this booklet is for the use of candidates following the Advanced GCE in Physics A (H556) course.

The data, formulae and relationships in this datasheet will be printed for distribution with the examination papers

Copies of this booklet may be used for teaching.
This document consists of 8 pages.

Data, Formulae and Relationships

Data

Values are given to three significant figures, except where more - or fewer - are useful.

Physical constants

acceleration of free fall	g	$9.81 \mathrm{~m} \mathrm{~s}^{-2}$
elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	N_{A}	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
molar gas constant	R	$8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Boltzmann constant	k	$1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\left(\mathrm{~F} \mathrm{~m}^{-1}\right)$
electron rest mass	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}^{2}$
proton rest mass	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}^{2}$
neutron rest mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}^{2}$
alpha particle rest mass	m_{α}	$6.646 \times 10^{-27} \mathrm{~kg}^{2}$
Stefan constant	σ	$5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}{ }^{-2} \mathrm{~K}^{-4}$

Quarks

up quark
down quark
strange quark

$$
\begin{aligned}
& \text { charge }=+\frac{2}{3} e \\
& \text { charge }=-\frac{1}{3} e \\
& \text { charge }=-\frac{1}{3} e
\end{aligned}
$$

Conversion factors

unified atomic mass unit
electronvolt
day
year
light year
parsec
$1 \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg}$
$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
1 day $=8.64 \times 10^{4} s$
1 year $\approx 3.16 \times 10^{7} s$
1 light year $\approx 9.5 \times 10^{15} \mathrm{~m}$
1 parsec $\approx 3.1 \times 10^{16} \mathrm{~m}$

Mathematical equations

arc length $=r \theta$
circumference of circle $=2 \pi r$
area of circle $=\pi r^{2}$
curved surface area of cylinder $=2 \pi r h$
surface area of sphere $=4 \pi r^{2}$
area of trapezium $=\frac{1}{2}(a+b) h$
volume of cylinder $=\pi r^{2} h$
volume of sphere $=\frac{4}{3} \pi r^{3}$
Pythagoras' theorem: $a^{2}=b^{2}+c^{2}$
cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$
sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$\sin \theta \approx \tan \theta \approx \theta$ and $\cos \theta \approx 1$ for small angles
$\log (A B)=\log (A)+\log (B)$
(Note: $\lg =\log _{10}$ and $\mathrm{In}=\log _{\mathrm{e}}$)
$\log \left(\frac{A}{B}\right)=\log (A)-\log (B)$
$\log \left(x^{n}\right)=n \log (x)$
$\ln \left(\mathrm{e}^{k x}\right)=k x$

Formulae and relationships

Module 2 - Foundations of physics
 vectors
 $F_{\mathrm{x}}=F \cos \theta$
 $F_{y}=F \sin \theta$

Module 3 - Forces and motion

uniformly accelerated motion	$\begin{aligned} & v=u+a t \\ & s=\frac{1}{2}(u+v) t \\ & s=u t+\frac{1}{2} a t^{2} \\ & v^{2}=u^{2}+2 a s \end{aligned}$
force	$\begin{aligned} & F=\frac{\Delta p}{\Delta t} \\ & p=m v \end{aligned}$
turning effects	$\begin{aligned} & \text { moment }=F X \\ & \text { torque }=F d \end{aligned}$
density	$\rho=\frac{m}{V}$
pressure	$\begin{aligned} & p=\frac{F}{A} \\ & p=h \rho g \end{aligned}$
work, energy and power	$\begin{aligned} & W=F X \cos \theta \\ & \text { efficiency }=\frac{\text { useful energy output }}{\text { total energy input }} \times 100 \% \\ & P=\frac{W}{t} \\ & P=F V \end{aligned}$
springs and materials	$F=k x$
	$\begin{aligned} & E=\frac{1}{2} F x ; E=\frac{1}{2} k x^{2} \\ & \sigma=\frac{F}{A} \\ & \varepsilon=\frac{x}{L} \end{aligned}$
	$E=\frac{\sigma}{\varepsilon}$

cosmology | $\frac{\Delta \Lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$ | |
| ---: | :--- |
| p | $=\frac{1}{d}$ |
| v | $=H_{0} d$ |
| t | $=H_{0}{ }^{-1}$ |

Module 6 - Particles and medical physics

capacitance and capacitors
$C=\frac{Q}{V}$
$C=\frac{\varepsilon_{0} A}{d}$
$C=4 \pi \varepsilon_{0} R$
$C=C_{1}+C_{2}+$.
$\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots$
$W=\frac{1}{2} Q V ; W=\frac{1}{2} \frac{Q^{2}}{C} ; W=\frac{1}{2} V^{2} C$
$\tau=C R$
$x=x_{0} \mathrm{e}^{-\frac{t}{C R}}$
$x=x_{0}\left(1-\mathrm{e}^{-\frac{t}{C R}}\right)$
electric field
$E=\frac{F}{Q}$
$F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}}$
$E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
$E=\frac{V}{d}$
$V=\frac{Q}{4 \pi \varepsilon_{0} r}$
energy $=\frac{Q q}{4 \pi \varepsilon_{0} r}$
magnetic field

$$
\begin{aligned}
& F=B I L \sin \theta \\
& F=B Q v
\end{aligned}
$$

electromagnetism	$\phi=B A \cos \theta$
$\mathcal{E}=-\frac{\Delta(N \phi)}{\Delta t}$	
$\frac{n_{s}}{n_{p}}=\frac{V_{s}}{V_{p}}=\frac{I_{p}}{I_{s}}$	
radius of nucleus	$R=r_{0} A^{1 / 3}$
radioactivity	$A=\lambda N ; \frac{\Delta N}{\Delta t}=-\lambda N$
	$\lambda t_{1 / 2}=\ln (2)$
Einstein's mass-energy equation	$N=A_{0} \mathrm{e}^{-\lambda t}$
attenuation of X-rays	$\Delta E=\Delta m c^{2}$
ultrasound	$I=I_{0} \mathrm{e}^{-\mu x}$
	$Z=\rho C$

